
M-DPM-12 (Type 44) List of contents   6-1

6.  M-DPM-12
PROFIBUS DP Master up to 12 MBaud

Functional Description 6-3

Block diagram ........................................................................................................ 6-3
Technical data ........................................................................................................ 6-3
Items included in the delivery................................................................................ 6-4

Configuration and installation 6-5

Module Layout ....................................................................................................... 6-5
EEPROM contents ................................................................................................. 6-6

Plug connector assignments 6-12



6-2  M-DPM-12 (Type 44) List of contents (continued)

Programming 6-13

Initialization ......................................................................................................... 6-13
Performing a module reset ................................................................................... 6-13
Downloading a binary data record....................................................................... 6-14
LEDs 1 and 2........................................................................................................ 6-14
Selecting an interrupt line from module to base board ....................................... 6-15
Accessing the dual-port RAM (DPRAM) ........................................................... 6-17
Consistent access operations................................................................................ 6-18
Conflict control .................................................................................................... 6-19
General sequence ................................................................................................. 6-23

High-Level Language Libraries 6-24

Using the library with the M044TASK driver task ............................................. 6-24
Error handling ...................................................................................................... 6-25
Configuration ....................................................................................................... 6-26
Parameterizing the PROFIBUS ........................................................................... 6-27
Binary data for PROFIBUS parameterization ..................................................... 6-27
Master control ...................................................................................................... 6-32
Resetting the module............................................................................................ 6-34
Slave accessing .................................................................................................... 6-35
Defining the data channels................................................................................... 6-35
Special functions .................................................................................................. 6-47
Accessing the gate array of the M-DPM-12 module........................................... 6-47

Commissioning 6-51

Tips on installation............................................................................................... 6-51
Tips on operation (see also COM ET 200 Online Help)..................................... 6-51
Programming with the high-level language library............................................. 6-52
Programming example ......................................................................................... 6-53

Programming with I/O access operations 6-54

Local I/O addresses.............................................................................................. 6-54



M-DPM-12 (Type 44) Block diagram   6-3

Functional Description

M-DPM-12 is an intelligent PROFIBUS-DP master module for SORCUS
MODULAR-4/486 base boards. All baudrates  are supported, including 12 MBaud.
The interface used between the local intelligence (C165 microcontroller) and the
MODULAR-4/486 is a dual-port RAM (DPRAM), over which commands and data
are exchanged. The physical PROFIBUS interface is plugged on by a C-Link
(Standard: RS-485, electrically isolated).

Before commissioning  the module, you must insert the C-Link in the slot provided,
since for operating the module the C-Link is absolutely essential (even if the module
is not connected to the PROFIBUS).

Block diagram

EEPROMEEPROM

RxD

TxD

RTS

CTS

P
r
o
f
i
b
u
s

LED1LED1

RS232-BufferRS232-Buffer

TMT

RCV

A

B

GND

LED1

LED2

LED2LED2

ASPC 2
Profibus-Master

ASPC 2
Profibus-Master DPRAMDPRAM

   
   

   
SP

B
us

   
   

   
SP

B
us

Gate ArrayGate Array

Interrupt
Register

Interrupt
Register

RTS C-Link
CL485i/P

C-Link
CL485i/P

RAMRAM

EPROMEPROM

Flash-MemoryFlash-Memory

Configuration
Register

Configuration
Register

C165
Microcontroller

C165
Microcontroller

Technical data

Parameter Value Unit



6-4  M-DPM-12 (Type 44) Technical data / Scope of delivery

PROFIBUS Controller Siemens ASPC 2 -

Microcontroller 80C165 20 MHz

Dual-ported RAM

Static RAM

2 x 8

2 x 128

Kbyte

Kbyte

EPROM

Flash memory

Serial EEPROM for configuration data

512

512

32

Kbyte

Kbyte

Words

Interrupt capability to base board
(interrupt channel software-selectable)

yes -

Supply voltages1 (from the base board) +5, ±12 V

Power consumption

(typical, externally nothing connected, LEDs 1 and
2 off, with C-Link CL485i/P): +5 V

+12 V1

-12 V1

190
4
4

mA
mA
mA

Operating temperature range 0 to 60 °C

Dimensions (L x W x H) 106 x 45 x 15 mm

                                          
1 ±12 V are used only for the RS232 interface.

Items included in the delivery

The scope of delivery for this module comprises:

• the M-DPM-12 module itself

• 20-pole post plug connector for ribbon cable

• floppy disk with program libraries



M-DPM-12 (Type 44) Configuration and installation  6-5

Configuration and installation

Before you plug the module onto the MODULAR-4/486, the C-Link adapter must be
plugged on (Pin 1 is identified on the module and on the C-Link). The module and
the C-Link do not contain any jumpers; all settings are made by software following
installation.

Module Layout

IC5

IC16

2     1
IC14

St1

C-Link-
Adapter

IC17

IC6

20  19

1

FPGA
IC1

IC4 IC12

IC11

IC15



6-6  M-DPM-12 (Type 44) EEPROM contents

EEPROM contents

A configuration in the EEPROM has already been pre-set in the factory:

WORD Binary Hex. Significance (Brief info)

 0 0010 0001 0011 0000 222ch Module type M-DPM-12
 1 0000 0000 0000 0000 0000h Initialization
 2 0000 0000 0000 0000 0000h Interrupt channel to base board
 3 0000 0000 0000 0000 0000h Gate array configuration
 4 0000 0000 0000 0000 0000h LED setting
 5 1001 0101 1111 0000 95f0h Gate array configuration
 6 0001 0101 1111 0000 15f0h Gate array configuration
 7 0000 0000 0000 0000 0000h Timeout counter
 8 0000 0000 0000 0000 0000h Gate array version/revision (IC 2)
 9 0000 0000 0000 0010 0002h ASPC 2 version (IC 6)

10 0000 0000 0000 0000 0000h Reserved
... ... ... ... ...

31 0000 0000 0000 0000 0000h Reserved

The EEPROM contents of Words 2, 4 and 7 are used for saving an user-specific
module configuration1. The EEPROM contents are not transferred directly (by
hardware) into the appropriate registers of the module, but can be read by the user
program, and utilized for programming  the registers.

                                          
1 See section on "Programming".



M-DPM-12 (Type 44) EEPROM contents   6-7

WORD-0: Type and version of the module (must not be altered!)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 WORD-0: Identifier

0 0 1 0 1 1 0 0 Module type (2ch = 44 = M-DPM-12)

0 0 1 0 Revision: 1 = Rev. A, 2 = Rev. B

0 Reserved

0 0 1 Identifier

WORD-1: Initialization

Only Bit 0 has a significance here at present. When this bit is set to 1, the module’s
registers will be configured and initialized after a hardware reset in accordance with
the data in the EEPROM.

When Bit 0 = 0 has been set, the module will not be automatically configured and
initialized after a hardware reset (or after system power-on).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WORD-1: Initialization (factory setting)

altered on: by:

0 Init after hard reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reserved



6-8  M-DPM-12 (Type 44) EEPROM contents

WORD-2: Interrupt channel to base board

Here you can store the interrupt channel of the base board to which the module is
connected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WORD-2: Interrupt channel (fact. setting)

altered on: by:

0 0 0 Interrupt channel

0 = no interrupt
1 = IRQ-A
2 = IRQ-B
3 = IRQ-C
4 = IRQ-D
5 = IRQ-E
6 = IRQ-F
7 = NMI

0 Reserved

0 XINTH interrupt enable

0 = Interrupt disabled
1 = Interrupt enabled

0 Consistency conflict detection

0 = per timeout counter
1 = per interrupt

0 Firmware timer interrupt

0 = Interrupt disabled
1 = Interrupt enabled

0 0 0 0 0 0 0 0 0 Reserved



M-DPM-12 (Type 44) EEPROM contents   6-9

WORD-3: Gate array configuration (must not be altered!)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WORD-5: Gate array configuration

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Gate array configuration

The gate array configuration has here been stored in memory by the factory.

WORD-4: LEDs 1 and 2

The status of the light-emitting diodes LED 1 and 2 after a reset can be stored here.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WORD-4: LEDs 1 and 2 (factory setting)

altered on: by:

0 LED 1

0 : off, 1 : on

0 LED 2

0 : off, 1 : on

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reserved

WORD-5: Gate array configuration (must not be altered!)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 WORD-5: Gate array configuration

1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 Gate array configuration

The gate array configuration has here been stored in memory by the factory.



6-10  M-DPM-12 (Type 44) EEPROM contents

WORD-6: Gate array configuration (must not be altered!)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 WORD-6: Gate array configuration

0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 Gate array configuration

The gate array configuration has here been stored in memory by the factory.

WORD-7: Initialization value for the timeout counter

Here you can save the timeout counter value (in dependence on the PROFIBUS
baudrate) for the consistency control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WORD-7: Timeout counter (factory setting)

altered on: by:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 bit timer value

WORD-8: Gate array version (IC 2, must not be altered by the user)

Here the version of the gate array (IC 2) has been stored in memory by the factory.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 WORD-8: CPLD Version

0 0 0 0 Revision

0 0 0 1 Version

0 0 0 0 0 0 0 0 Reserved



M-DPM-12 (Type 44) EEPROM contents   6-11

WORD-9: ASPC 2 Version (IC 6, must not be altered by the user)

Here the version of the ASPC 2 ASICs (IC 6) has been stored in memory by the
factory.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 WORD-9: ASPC 2 Version

0 0 1 0 Step (0 = A, 1 = B, 2 = C, ...)

0 0 0 0 Revision

0 0 0 0 0 0 0 0 Reserved



6-12  M-DPM-12 (Type 44) Plug connector assignments

Plug connector assignments

Pin1 Signa
l

Significance Pin Signal Significance

1 GND Ground (PC) 11 DPPE DPPE (optional)

2 +5 V +5 Volt (PC), optional 12 DP5V + 5 Volt, isolated

3 RCV C165 RS232 13 - n.c.

4 LED1 LED 1 14 - n.c.

5 TMT C165 RS232 15 DPB DPB, isolated

6 LED2 LED 2 16 DPA DPA, isolated

7 - n.c. 17 DPRTS Request To Send, isol.

8 - n.c. 18 - n.c.

9 - n.c. 19 DPGND Ground, isolated

10 - n.c. 20 - n.c.

Table 6-1: Pin assignments for the post plug connector St1 (Rev. B)

19

20

20 19 18 17 16 15 14 13 12 11 10 9   8  7   6  5   4  3    2  1

20 pol.
Post plug connector

9 pol.
Flat ribbon cable

9 pol. Sub-D
Connector

n.c.

5    4    3    2    1

9    8    7    6

                                          
1 Pins 3 and 5 of the plug connector must not be connected!

Fig. 6-1: Cable for M-DPM-12 at Siemens ET200 (e.g. SORCUS K2-2720)



M-DPM-12 (Type 44) Programming  6-13

Programming

This chapter is intended solely for those users who want to access the module’s
hardware directly (programming with I/O addresses).

The following function groups must be programmed on the module:

• Selection of an interrupt line from the module to the base board, setting the type of
conflict detection / interrupt selection (see Interrupt Select Register ISR, 8 bits)

• Timeout counter for conflict handling (see Timeout-Register TOR, 16 bits)

• Setting LEDs 1 and 2 (see LED Register LER, 2 bits)

• The DPRAM as the interface to the module

After a hardware reset of the module (e.g. power-on or through the OsX operating
system), all the module’s writable registers and pointers = 0. The timeout counter is
set to ffffh.

Initialization

Performing a module reset

There are two ways to reset the module. A write access operation to I/O address
MBA + 07h (MBA = Module Base Address) executes a reset of the gate array and a
reset of the PROFIBUS master. The PROFIBUS interface can also be reset
separately (XRESET). The XRESET line is set using I/O address MBA + 05h. To
initiate a reset, data bytes 8fh, 0fh and 8fh must be written one after the other onto
the I/O address MBA + 05h. After the master has been reset, it will go into STOP
status. Resetting the master takes approx. 1 second, and during this time the master
must not be accessed.

When the gate array is reset, all internal registers are set to 0. The timeout counter is
set to ffffh.



6-14  M-DPM-12 (Type 44) Programming

Downloading a binary data record

Parameterization of the PROFIBUS is handled by means of a binary data record,
which can be created using the Siemens software COM ET 200. This binary data
record must then be transferred onto the module once with the aid of the library
(M044_LIB). A reset (see above) will then be required in order to activate the new
parameters1.

LEDs 1 and 2

The two LEDs on the module can be programmed separately or together. A write
access operation to the LED register LER sets the status of the LEDs (0 = off, 1 =
on).

Note that only Bits 0 to 3 are used; Bits 4 to 7 are invalid, and should be set to 0.

Bit 0 LED 1 selection

0 LED 1 unchanged
1 LED 1 is set as per Bit 2

Bit 1 LED 2 selection

0 LED 2 unchanged
1 LED 2 is set as per Bit 3

Bit 2 LED 1 output value

0 LED 1 off
1 LED 1 on

Bit 3 LED 2 output value

0 LED 2 off
1 LED 2 on

The status of the light-emitting diodes and the LED register (LER) can also be read
back from the base board (a total of 2 bits, since Bits 2 to 7 are invalid).

                                          
1 See section on "Commissioning".



M-DPM-12 (Type 44) Programming  6-15

Selecting an interrupt line from module to base board

The module has an interrupt capability, i.e. it can trigger an interrupt to the base
board in response to certain events (pos. edge). The module’s interrupt line can be
software-connected to one of the base board’s interrupt inputs. An interrupt is
selected by setting the module’s interrupt select register ISR, Bits 0 to 2.

There are three independent interrupt sources:

1. Through a request by the master (ASPC 2/C165) over the XINTH line: this
interrupt can, for example, be used to call the error handling function in response
to a system error. This interrupt source is activated by a software reset (see the
section entitled "Standard-language library").

2. The consistency control can trigger an interrupt in response to a consistency
conflict (see the section entitled "Standard-language library").

3. In addition, the firmware timer can likewise be used for triggering an interrupt via
the XTESTO line.

Bits 4 to 6 of the ISR are used to select the interrupt source. Bit 4 selects interrupts
from the DPRAM via XINTH. Bit 5 can be used to specify whether the consistency
status bit can trigger an interrupt or whether the internal timeout counter is used (no
interrupt). Bit 6 can be used to set whether the firmware timer can trigger interrupts.
A set bit (=1) activates the interrupt source concerned.

While the interrupt channel is being set, the module must not request an interrupt,
and on the base board the interrupts must be (temporarily) masked. Bit 3 and Bit 7 of
the ISR are reserved, and should be set to 0.



6-16  M-DPM-12 (Type 44) Programming

Selecting the interrupt line to the base board:

Bit 2 Bit 1 Bit 0 Interrupt line of the MODULAR-4/486

0 0 0 none

0 0 1 IRQ-A

0 1 0 IRQ-B

0 1 1 IRQ-C

1 0 0 IRQ-D

1 0 1 IRQ-E

1 0 1 IRQ-F

1 1 1 NMI

Possible interrupt sources:

Bit 4 Master Interrupt Enable (XINTH)1

0 No interrupt

1 Interrupt when XINTH = 0

Bit 5 Consistency conflict control/detection

0 Consistency request by ASPC 2 triggers consistency timer

1 Interrupt in response to consistency request by ASPC 2

Bit 6 Firmware Timer Interrupt Enable

0 No interrupt

1 Periodic interrupt through firmware timer

The Interrupt Select Register (ISR) can also be read by the base board. Note that Bits
3 and 7 are reserved/invalid.

                                          
1 See also section on "Programming".



M-DPM-12 (Type 44) Programming  6-17

Deleting an interrupt request:

An interrupt request can be read by the user in the Interrupt Status Register (IST).
The master interrupt request is maintained (XINTH = 0) until the user performs an
interrupt acknowledge (by means of a read access operation to DPRAM address
1ffeh). The consistency status bit is deleted by setting or deleting a consistency
request. A firmware timer interrupt must be deleted by a write access operation on
the Interrupt Select Register (ISR).

Accessing the dual-port RAM (DPRAM)

The DPRAM on the module is accessed using a programmable address pointer (14
bits). To enable the dual-ported RAM to be accessed both bytewise and wordwise;
Bit 0 of the address pointer selects whether the low or the high byte is used for byte
access operations. Irrespective of this, when the DPRAM is accessed via the I/O
address it is specified whether the read or write operation will be performed
wordwise or bytewise. In the case of word accessing, the system accesses the word
currently selected, irrespective of Bit 0.

Since the I/O access operations of the base board onto the DPRAM are always
performed wordwise, the user software must swap the data appropriately at need in
the case of high-byte access operations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DPRAM address pointer

0 0 14 bit address pointer (A0 to A13)

A0 selects low or high byte for byte access
operations (0 = low, 1 = high)

0 0 Reserved

When the DPRAM is accessed, the I/O address can be used to select whether the
address pointer is to be automatically incremented after completion of the access
operation concerned. In the case of word accessing, the address pointer will then be
incremented by 2, and in the case of byte accessing by 1. The valid address range is
from 0000h to 3fffh.



6-18  M-DPM-12 (Type 44) Programming

Addressing the dual-ported RAM:

A0 = 0, Low-Byte A0 = 1, High-Byte

3ffeh 3fffh

   .    .

   .    .

0000 0001

To enable the DPRAM to be accessed, the following operations are required:

First of all, the DPRAM address pointer must be set to the address earmarked for the
read or write operation, by means of an I/O write access operation (MBA + 00h).
The subsequent read or write access operations onto the DPRAM are then executed
using this address pointer: performing an 8- or 16-bit read or write access operation,
where appropriate with auto-incrementation of the address pointer by 1 or 2.

Consistent access operations

Consistent access operations onto the DPRAM are initiated by setting the read or
write consistency line (consistency request). This must be followed immediately by
actual access to the DPRAM. When all access operations have been carried out, the
consistency request must be cancelled. This is done by performing a read access
operation on the module status register. When both the base board and the module
want to access the DPRAM consistently at the same time, a conflict control function
is activated. Note that the ASPC 2 has priority over the host, i.e. after a defined time
period (timeout) the host has to cancel its consistency request.

The module’s conflict control function regulates the sequence of access operations so
as to ensure that the host (i.e. the base board) either cannot perform any valid access
operations after expiry of an internal timeout counter, or an interrupt is triggered as
soon as the ASPC 2 wants to implement consistent access. In this case, the host still
has a certain amount of time (see below, depends on the PROFIBUS baudrate)
available for finishing its access operations.



M-DPM-12 (Type 44) Programming  6-19

Conflict control

A few brief words of explanation to start with on the control lines used:

XRHCONS Consistency read request (low-active) from the base board

XWHCONS Consistency write request (low-active) from the base board

XHKAK Consistency acknowledge (confirmation, low-active) from the ASPC
2, consistent access operations from the base board enabled

A-CONS Consistency request (high-active) from the ASPC 2; the base board
can access only when A-CONS = 0 and XHKAK = 0

RDYH Ready line to the base board (high-active)
Access operations from the base board can be delayed in the event of
a conflict

RDYP Ready line to the ASPC 2 (high-active)
Access operations from the ASPC 2 can be delayed in the event of a
conflict

Base board accesses the ASPC 2

When the ASPC 2 is already consistently accessing, and the base board also wishes
to access, the base board’s access operation will be automatically braked (RDYH-
withdrawal). As soon as the ASPC 2 has finished its access operations, the base
board is enabled for accessing, and can execute its access operations.

The user can also, after he/she has set the consistency request, interrogate the A-
CONS line. As soon as A-CONS = 0 (i.e., the ASPC 2 is no longer consistently
accessing), access operations can be performed to the DPRAM.



6-20  M-DPM-12 (Type 44) Programming

Host-Interface

Consistency-request

DPR-access

Ready

XHKAK

A-CONS

ASPC 2

Konsistenz-request

DPR-access

Ready

ASPC 2 before Host

1

2

3

4

Sequence:

1. The ASPC 2 requests consistent access operations.

2. The host requests consistent access operations (somewhat later).

3. The host accesses without waiting for XHKAK, and is braked by means of "ready"
withdrawal.

4. The ASPC 2 finishes its access operation so that the host can begin.

ASPC 2 accesses the base board

As long as valid base board access operations are ongoing, the XHKAK line
(consistency acknowledge) is activated.

If during a consistent access (consistency request of the MODULAR-4/486 board
active) the ASPC 2 likewise wants to execute consistent accessing, it will be
automatically braked (RDYP withdrawal). However, the base board’s consistency
request must have been finished 80 µs at the latest (with 12 MBaud) after the request
of the ASPC 2, since the latter will otherwise not be able to comply with the cycle
time.



M-DPM-12 (Type 44) Programming  6-21

Conflict control with timeout counter

The gate array starts a timer as soon as the ASPC 2 wants to execute consistent
accessing (ACONS is activated and XHKAK is active). If the timer exceeds the preset
timeout time, the base board’s access operation is aborted (XCSHOST = 1,
consistency request terminated). This means the ASPC 2 can now begin its own
access operations.

You must, after your last consistent access operation, terminate the consistency
request. You do this by a read access operation, which additionally returns the status
of the TIMEOUT-STATUS, R-CONS, W-CONS, A-CONS, XHKAK, XCSDPR2
lines and the CONSISTENCY STATUS BIT. If TIMEOUT-STATUS = 1, this
means the timeout counter has expired, and thus the access operation or the data
from the host are not valid; the entire access operation must then be repeated. And
the status must be erased beforehand.

tTIMEOUT =
8·NoOfByteFIFO

BaudratePROFIBUS

The timeout counter can be set from 0 to 0.65 s. This is done using the Timeout
Counter Register TOR (16 bits). The timeout time depends on the PROFIBUS
baudrate used, and the FIFO size of the ASPC 2.

In the case of an ASPC 2 Step C (128 Byte FIFO), the following max. timeout times
are obtained:

Possible timeout values are, for example: 84 µs at 12 MBaud

to

100 ms at 9600 Baud

In the case of an ASPC 2 Step B (64 Byte FIFO), the timeout times concerned are
halved!

The 16 bit timer value (TOR) can be set by means of a write access operation to I/O
address MBA + 08h.



6-22  M-DPM-12 (Type 44) Programming

Conflict control with interrupt

If during consistent accessing by the host a consistency request  is made by the
ASPC 2 (A-CONS = 1, see above), an interrupt to the base board can be triggered
(CONSISTENCY STATUS BIT = 1). The host then has to ensure that the access
operations are terminated in good time. The timeout counter is not used here. If the
consistency request is not terminated in good time, or if the access operation
overruns the timeout time, this may lead to an error state of the PROFIBUS.

Host-Interface

Consistency-request

DPR-access

Ready

XHKAK

A-CONS

ASPC 2

Consistency-request

DPR-access

Ready

Timeout-counter starts or interrupt triggered

Host before ASPC 2

1

2

3

4

Sequence:

1. The host requests consistent accessing.

2. XHKAK enables the access operations, since ASPC 2 is not requesting
consistency.

3. ASPC 2 requests consistency, but is braked by "ready" withdrawal. The timeout
counter is started, or an interrupt to the base board triggered. The host consistency
must be terminated before the timer expires or the timeout time has elapsed.



M-DPM-12 (Type 44) Programming  6-23

4. Host consistency terminated; ASPC 2 begins accessing.

General sequence

If consistent accessing is to be executed to the DPRAM, the sequence looks like this:

1. Set the read or write consistency request (MBA + 18h, Data = 01h for read,
Data = 02h for write).

2. Read module status (MBA + 19h) until XHKAK = 0 (Bit 5, consistency
acknowledge).

3. Set the DPRAM pointer to the address for reading or writing.

4. Execute 8 or 16-bit read or write access, if required with auto-incrementation of
the address pointer.

5. Repeat points 3 (optional) and 4 until all data have been transferred.

6. Erase the consistency request by reading MBA + 18h. Note that the module
status is outputted automatically. If CONSISTENCY-STATUS = 1, then a
consistency request the ASPC 2 has occurred during consistent host accessing.
Only when the TIMEOUT-STATUS = 1 too will there be an actual error. Then the
entire access operation must be repeated by the host; all data are invalid. In
addition, the status must be erased by a write access operation to MBA + 18h with
Data = 0, to make access operations to the DPRAM possible again.



6-24  M-DPM-12 (Type 44) High-Level Language Libraries

High-Level Language Libraries

For information on how the library is integrated and used, please consult the "High-
Level Language Libraries" section in the introduction. The name of the library
(libname) is M044_LIB, and you will find it in the (pathname) directory MODULE.
Before all other routines, the m044_bib_startup procedure must be called once.

Using the library with the M044TASK driver task

Together with the M044_LIB libraries, the package supplied also includes an NI-task
M044TASK.EXE and an associated task library M044_MDD. The M044_MDD
library has the same functions and procedures as the M044_LIB, but all PROFIBUS
functions are executed using a task function. The advantage of this is that in a multi-
tasking environment several applications can share one module. Any conflicts
arising are intercepted by the task. The M044_MDD library is suitable both for PC
programs and realtime programs. You can use the header files of the M044_LIB to
integrate the library.

The M044TASK.EXE task has the program number 329h, and must be installed on
the MODULAR-4/486 with the flags 0180h. A global variable tasknum of the ushort
type must be declared external by the application program, and have been preset
with the task number. This can also be done with m044_set_tasknum (task number)
before calling the first library function.



M-DPM-12 (Type 44) High-Level Language Libraries  6-25

Error handling

All library functions supply an error status as a return value, which has to be
evaluated by the application program.

Error 1bh No M-DPM-12 on the specified module slot, or the slot specified in the
function does not coincide with the slot set using m044_configure.

Error 40h Error in executing the function; the error diagnosis must be read from
the error buffer with "get_error".

Error 41h Function cannot be executed at present, since occupied by another
application.

After you have called a library function, if there is an error the diagnostic message
must be read and appropriately evaluated. Function (1) is used for this purpose.

m044_get_error Read error diagnosis

Pascal FUNCTION m044_get_error (micro_slot: byte, VAR data) : word

C ushort EXPORT m044_get_error (byte micro_slot, ushort *data);

Function The error diagnosis is read.

Parameter data: The 1st word contains the Function Number (x = 1..33) at
which the error has occurred, with the diagnostic data
provided as from Word 2  (currently always one word). A
total of 10 words are read.

Note: If a library function supplies a timeout error in the diagnosis, this
means a command to the master has not been acknowledged. One
reason for this may be that the C-Link has not been plugged on.



6-26  M-DPM-12 (Type 44) High-Level Language Libraries

Configuration

m044_bib_startup Initialize module library

Pascal FUNCTION m044_bib_startup : word;

C ushort EXPORT m044_bib_startup (void);

Function This function (2) initializes the module library. The initialization data,
for instance, are transferred into the library from the EEPROMs of all
M-DPM-12 modules plugged on.

m044_configure Configure module

Pascal FUNCTION m044_configure (micro_slot: byte) : word;

C ushort EXPORT m044_configure (byte micro_slot);

Function This function (3) configures a module in accordance with the
specifications in the module’s EEPROM.

m044_get_master_mode Read current master mode

Pascal FUNCTION m044_get_master_mode (micro_slot; VAR status: byte):
word;

C ushort EXPORT m044_get_master_mode (byte micro_slot,
byte *status);

Function This function (4) reads the current master mode for coordination when
the master is run up. If after a hardware reset (e.g. power-on) the
master mode is _M044_STOP, this means the module is ready for
operation.

Parameter status: _M044_STOP: Master is in STOP mode
_M044_CLEAR: Master is in CLEAR mode
_M044_OPERATE: Master is in OPERATE mode



M-DPM-12 (Type 44) High-Level Language Libraries  6-27

Parameterizing the PROFIBUS

Binary data for PROFIBUS parameterization

For PROFIBUS parameterization, the module requires what is called a binary data
record. This binary data record can be created with the PC program COM ET 200
(Siemens) under Windows 3.1, and saved in a binary file. This binary file has to be
transferred to the module (download).

Binary data can be transferred both from the host to the module (download) and from
the module to the host (upload). The master mode must be "STOP".

m044_download Transfer binary data

Pascal FUNCTION m044_download (micro_slot: byte; VAR data;
data_size: byte; flag: byte) : word;

C ushort EXPORT m044_download (byte micro_slot, void *data,
byte data_size, byte flag)

Function This function (5) transfers binary data from the host to the module. A
binary file (size: approx. 7 KByte) has to be downloaded onto the
module in several steps, since only data blocks of max. 200 bytes can
be transferred at a time. No other library functions may be called while
the blocks are being transferred.

Parameter data: Pointer to the data block for transfer

data_size: Size of the data block (0 to 200) in bytes

flag: _M044_NO_MORE_DATA: no further binary data
_M044_MORE_DATA: more binary data to follow

Diagnosis 0: Command correctly executed

2: Error: timeout, function aborted

256: Error: command semaphore not set

Note: When all data blocks have been transferred, the module has to be reset
(with the m044_reset_master(..) function). The master must then be in
the "STOP" operating status. If this is not the case, this means that
either binary file transmission or the binary file itself was faulty.



6-28  M-DPM-12 (Type 44) High-Level Language Libraries

From a PC program, the binary data available as a binary-data file can be transferred
from the host to the module with the following function (6). The module then has to
be reset.

m044_download_file Transfer binary file

Pascal FUNCTION m044_download_file (micro_slot: byte;
binary_file : str80; VAR downloaded : word) : word;

C ushort EXPORT m044_download_file (byte micro_slot,
const void *binary_file, ushort *downloaded)

Function Transferring a binary file to the module.

Parameter binary_file: Name of the binary file

downloaded: Number of bytes transferred

Diagnosis 0: Command correctly executed

1: Error when reading file

256: Error: command semaphore not set

m044_upload Read binary data

Pascal FUNCTION m044_upload (micro_slot: byte; VAR data;
VAR data_size: byte; VAR flag: byte) : word;

C ushort EXPORT m044_upload (byte micro_slot, void *data,
byte *data_size, byte *flag)

Function This function (7) transfers binary data from the module to the host. A
binary file will usually be about 7 KByte in size. Since only 250 bytes
can be transferred, it is necessary to call this function several times.
Before the first call, _M044_START_DATA must be entered in the
flag parameter.



M-DPM-12 (Type 44) High-Level Language Libraries  6-29

Parameter data: Pointer on destination data area

data_size: Number of binary data transferred (in bytes)

flag: transfer parameter:
_M044_START_DATA: 1st block for transfer
_M044_NO_MORE_DATA: all binary data transferred
_M044_MORE_DATA: Transfer incomplete

Diagnosis 0: Command correctly executed

2: Error: timeout, function aborted

5: Error: incorrect command sequence

256: Error: command semaphore not set

From a PC program, the following function (8) can be used to transfer the binary
data available from the module to the host, and save them in a file:

m044_upload_file Read and save binary file

Pascal FUNCTION m044_upload_file (micro_slot: byte; binary_file : str80;
VAR uploaded : word) : word;

C ushort EXPORT m044_upload_file (byte micro_slot,
const void *binary_file, ushort *uploaded)

Parameter binary_file: Name of binary file

uploaded: Number of bytes transferred

Diagnosis 0: Command correctly executed

1: Error in writing the file

5: Error: incorrect command sequence

256: Error: command semaphore not set



6-30  M-DPM-12 (Type 44) High-Level Language Libraries

m044_set_slave_address Set slave address

Pascal FUNCTION m044_set_slave_address (micro_slot: byte; VAR data;
size: byte) : word;

C ushort EXPORT m044_set_slave_address (byte micro_slot,
void  *data, byte size);

Function This function (9) sets a slave’s address. This is conditional on it being
possible to program the slave over the bus. The function is required for
each slave whose address is greater than 123 due to design constraints.
Slaves newly addressed must already have been entered with their
correct addresses during planning work with COM ET 200.

Parameter data: Pointer on slave parameter structure
1st byte: new slave address
2nd byte: address change identifier
3rd byte: old or current slave address
Optionally, you can transfer additional slave data as per
standard (see manual for slave).

size: Size of slave parameter structure (3 to 250 bytes, see
above)

Diagnosis 0: Command correctly executed

1: Error: slave cannot process service

2: Error: slave has no resources

3: Error: command not activated at slave

5: Error: bus short-circuit

6: Error: timeout, function aborted

159: Error: slave does not answer

175: Error: slave answers incorrectly

191: Error: bus malfunction

256: Error: command semaphore not set



M-DPM-12 (Type 44) High-Level Language Libraries  6-31

m044_restart Reset master software

Pascal FUNCTION m044_restart (micro_slot: byte; restart_par: byte) :
word;

C ushort EXPORT m044_restart (byte micro_slot, byte restart_par);

Function This function (10) resets the master software on the module. This
software only needs to be reset after a download or the setting of a
slave address, so as to activate the new PROFIBUS configuration.

Parameter restart_par: Operating mode to be assumed after restart:
_M044_STOP: Master in STOP mode
_M044_CLEAR: Master in CLEAR mode
_M044_OPERATE: Master in OPERATE mode

This is used to adopt the bus parameters currently set (e.g.
those after a download). If you want to adopt different bus
parameters, you can link one of  the following parameters
to the operating mode parameter (=bitwise OR):

_M044_DEFAULT_PAR: Default parameter
_M044_EPROM_PAR: Parameter from EPROM

If an interrupt to the base board is to be triggered on the
module if a PROFIBUS system error occurs, then another
OR conjunction is required, with the following parameter:

_M044_ENABLE_IRQ:System error interrupt

Diagnosis 0: Command correctly executed

1: Error: timeout, function aborted

256: Error: command semaphore not set



6-32  M-DPM-12 (Type 44) High-Level Language Libraries

Update
m044_refresh_slave_datastruct data structure buffer

Pascal FUNCTION m044_refresh_slave_datastruct (micro_slot: byte):word;

C ushort EXPORT m044_refresh_slave_datastruct (byte micro_slot);

Function This function (11) transfers the data structure information of all
parameterized slaves into the data structure buffer of the module
library. This function has to be called after a restart.

Diagnosis 0: Command correctly executed

1: Error: timeout, function aborted

5: Error: incorrect command sequence

256: Error: command semaphore not set

Master control

m044_set_master_mode Set master operating mode

Pascal FUNCTION m044_set_master_mode (micro_slot: byte;
command: byte) : word;

C ushort EXPORT m044_set_master_mode (byte micro_slot,
byte command);

Function This function (12) controls the master’s operating mode.

Parameter command: _M044_CLEAR: Master in CLEAR mode
_M044_STOP: Master in STOP mode
_M044_OPERATE: Master in OPERATE mode
_M044_SYNCHRONIZE: Synchronization command

between host and master

Diagnosis 0: Command correctly executed

1: Error: timeout, function aborted

256: Error: command semaphore not set



M-DPM-12 (Type 44) High-Level Language Libraries  6-33

m044_watchdog_enable Activate master’s watchdog

Pascal FUNCTION m044_watchdog_enable (micro_slot: byte;
timeout: word) : word;

C ushort EXPORT m044_watchdog_enable (byte micro_slot,
ushort timeout);

Function This function (13) activates or de-activates the master’s watchdog.
When the watchdog is activated, the user software has to make sure
that the watchdog is reset within the preset time interval.

Parameter timeout: Timeout as a factor of 10 ms (0 to 65535)
timeout = 0 de-activates the watchdog

Diagnosis 0: Command correctly executed

1: Error: timeout, function aborted

256: Error: command semaphore not set

m044_watchdog_retrigger Trigger the watchdog

Pascal FUNCTION m044_watchdog_retrigger (micro_slot: byte) : word;

C ushort EXPORT m044_watchdog_retrigger (byte micro_slot);

Function This function (14) retriggers the module’s watchdog, and has to be
called cyclically by the user program. If the watchdog is expired, the
master will halt, and no longer access the slaves, whereupon the slaves
can go to a defined status (with response monitoring switched on). In
order to re-activate the master, the module or the master must be reset!

Diagnosis 0: Command correctly executed

>0: Error: timeout at retriggering



6-34  M-DPM-12 (Type 44) High-Level Language Libraries

Resetting the module

m044_reset_master Reset the master

Pascal FUNCTION m044_reset_master (micro_slot: byte) : word;

C ushort EXPORT m044_reset_master (byte micro_slot);

Function This function (15) executes a reset of the master. The register contents
of the module remain unchanged. After the master has been reset, it
will be in "STOP" status. Resetting the master takes several
milliseconds. During this time, the master must not be accessed!

m044_hard_reset Reset module

Pascal FUNCTION m044_hard_reset (micro_slot: byte) : word;

C ushort EXPORT m044_hard_reset (byte micro_slot);

Function This function (16) resets the entire module (gate array and PROFIBUS
master). After the master has been reset, it will be in "STOP" status.
Resetting the master takes several milliseconds. During this time, the
master must not be accessed!



M-DPM-12 (Type 44) High-Level Language Libraries  6-35

Slave accessing

Defining the data channels

The link between the PROFIBUS master and the PROFIBUS slaves is designated
below as a data input channel or a data output channel. To enable a slave’s inputs and
outputs to be selectively accessed, the data channels are divided up into sub-
channels. These sub-channels are numbered upwards, beginning with 0, according to
the scheme below (example for a 16-byte data channel):

Relative offset Byte accessing Word accessing

0 Sub-channel 0 Sub-channel 0

1 Sub-channel 1

2 Sub-channel 2 Sub-channel 1

3 Sub-channel 3

: : :

14 Sub-channel 14 Sub-channel 7

15 Sub-channel 15



6-36  M-DPM-12 (Type 44) High-Level Language Libraries

m044_set_slave_byte

m044_set_slave_word Write byte or word

Pascal FUNCTION m044_set_slave_byte (micro_slot: byte; slave: byte;
subchannel: byte; data: byte; cons: byte) : word;

Pascal FUNCTION m044_set_slave_word (micro_slot: byte; slave: byte;
subchannel: byte; data: word; cons: byte) : word;

C ushort EXPORT m044_set_slave_byte (byte micro_slot, byte slave,
byte subchannel, byte data, byte cons);

C ushort EXPORT m044_set_slave_word (byte micro_slot, byte slave,
byte subchannel, ushort data, byte cons);

Function These functions (17 and 18) write an individual datum (byte or word)
into a slave’s output sub-channel.

Parameter slave: Slave address (3 to 123)

subchannel: Sub-channel

data: Datum to be set, of the byte or word type

cons: Consistency flag:
_M044_NO_CONS: without consistency
_M044_CONS: with write consistency

Diagnosis 0: Command correctly executed

100: Error: bus differently parameterized

101: Error: consistency conflict (write operation must be
repeated)



M-DPM-12 (Type 44) High-Level Language Libraries  6-37

m044_set_slave_block Write data block

Pascal FUNCTION m044_set_slave_block (micro_slot: byte; slave: byte;
word : offset; size: byte; VAR data; cons:byte) : word;

C ushort EXPORT m044_set_slave_block (byte micro_slot, byte slave,

ushort offset, byte size, void *data, byte cons);

Function This function (19) writes a data block, beginning with Sub-channel 0 +
 offset into a slave’s data input channel.

Parameter slave: Slave address (3 to 123)

offset: Offset on Sub-channel 0

size: Number of bytes for setting

data: Pointer on source data buffer (block for setting)

cons: Consistency flag:
_M044_NO_CONS: without consistency
_M044_CONS: with write consistency

Diagnose 0: Command correctly executed

100: Error: bus differently parameterized

101: Error: consistency conflict (write operation must be
repeated)

102: Error: size > slave’s buffer size



6-38  M-DPM-12 (Type 44) High-Level Language Libraries

m044_get_slave_byte

m044_get_slave_word Read byte or word

Pascal FUNCTION m044_get_slave_byte (micro_slot: byte; slave: byte;
subchannel: byte; VAR data: byte; cons: byte) : word;

Pascal FUNCTION m044_get_slave_word (micro_slot: byte; slave: byte;
subchannel: byte; VAR data: word; cons: byte) : word;

C ushort EXPORT m044_get_slave_byte (byte micro_slot, byte slave,
byte subchannel, byte *data, byte cons);

C ushort EXPORT m044_get_slave_word (byte micro_slot, byte slave,
byte subchannel, ushort *data, byte cons);

Function These functions (20 and 21) read an individual datum (byte or word)
from a slave’s input sub-channel.

Parameter slave: Slave address (3 to 123)

subchannel: Sub-channel

data: Pointer on destination data buffer (byte or word)

cons: Consistency flag:
_M044_NO_CONS: without consistency
_M044_CONS: with read consistency

Diagnosis 0: Command correctly executed

100: Error: bus differently parameterized

101: Error: consistency conflict (read operation must be
repeated)



M-DPM-12 (Type 44) High-Level Language Libraries  6-39

m044_get_slave_block Read data block

Pascal FUNCTION m044_get_slave_block (micro_slot: byte; slave: byte;
offset : word, size: byte; VAR data; cons: byte) : word;

C ushort EXPORT m044_get_slave_block (byte micro_slot, byte slave,

ushort offset, byte size, void *data, byte cons);

Function This function (22) reads a data block, beginning with Sub-channel 0 +
offset from a slave’s data input channel.

Parameter slave: Slave address (3 to 123)

offset: Offset on Sub-channel 0

size: Number of bytes for reading

data: Pointer on destination data buffer

cons: Consistency flag:
_M044_NO_CONS: without consistency
_M044_CONS: with write consistency

Diagnosis 0: Command correctly executed

100: Error: bus differently parameterized

101: Error: consistency conflict (read operation must be
repeated)

102: Error: size > slave’s buffer size



6-40  M-DPM-12 (Type 44) High-Level Language Libraries

Give order
m044_set_slave_command to slave or slave group

Pascal FUNCTION m044_set_slave_order (micro_slot: byte; order: byte;
group: byte; slave: byte) : word;

C ushort EXPORT m044_set_slave_order (byte micro_slot, byte order,
byte group, byte slave);

Function This function (23) gives an order to a slave or a slave group. Groups
can be defined using COM ET 200.

Parameter order: _M044_FREEZE: Freeze inputs
_M044_UNFREEZE: Terminate freezing
_M044_SYNC: Set outputs to "synchronous"
_M044_UNSYNC Set outputs to "asynchronous"

group: Group Number (1..255, for 0: enter 255)

slave: Slave address (3..123) or _M044_BROADCAST

Diagnosis 0: Command correctly executed

1: Error: timeout, function aborted

2: Error: command not permitted

3: Error: command not permitted to slave or slave group

256: Error: command semaphore not set



M-DPM-12 (Type 44) High-Level Language Libraries  6-41

m044_get_slave_datastruct Read a slave’s data structure

Pascal FUNCTION m044_get_slave_datastruct (micro_slot: byte;
slave: byte; VAR data: m044_slv_datastr_type) : word;

C ushort EXPORT m044_get_slave_datastruct (byte micro_slot,
byte slave, m044_slv_datastr_type *data);

Function This function (24) reads a data structure from the library’s data
structure buffer. It is assumed that the data structure buffer contains the
current data structures of all parameterized slaves (see
m044_refresh_slave_datastruct).

Parameter slave: Slave address (3..123)

data: Address of a data structure variable of the type m044_slv_
datastr_type (see table below)

Diagnosis 0: Command correctly executed

1: Error: slave number not valid

The variable type m044_slv_datastr_type is a data structure consisting of the
following fields:

Field Data type Significance

.inp_ptr ushort DPRAM address of the input data

.outp_ptr ushort DPRAM address of the output data

.diag_ptr ushort DPRAM address of the diagnostic data

.diag_len_ptr ushort DPRAM address of the diagnosis length

.diag_cnt_ptr ushort DPRAM address of the diagnosis counter

.inp_len byte Number of input data bytes

.outp_len byte Number of output data bytes

.inout byte Information on the consistency of the inputs/outputs

.slave_type byte Type of slave



6-42  M-DPM-12 (Type 44) High-Level Language Libraries

m044_get_slave_diagnosis_list Read diagnosis list of all slaves

Pascal FUNCTION m044_get_slave_diagnosis_list (micro_slot: byte;
VAR data: m044_slv_bitmap_type) : word;

C ushort EXPORT m044_get_slave_diagnosis_list (byte micro_slot,
m044_slv_bitmap_type *data);

Function This function (25) reads the slave diagnosis list. Each bit of the data
read represents one slave (example: Slave 17=Bit-1 of the field
slave_16_31). A set bit means that the slave involved has reported a
diagnosis.

Parameter data: Address of a structure variable of the type m044_slv_
bitmap_type (see table below)

The variable type m044_slv_bitmap_type is a data structure consisting of the
following fields:

Field Data type Significance

.slave_0_15 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_16_31 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_32_47 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_48_63 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_64_79 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_80_95 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_96_111 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_112_123 ushort Bit field (Bit-0 .. Bit-11 valid)



M-DPM-12 (Type 44) High-Level Language Libraries  6-43

Check whether slave has
m044_check_slave_diagnosis reported diagnosis

Pascal FUNCTION m044_check_slave_diagnosis (micro_slot; slave;
VAR diaglen: byte) : word;

C ushort EXPORT m044_check_slave_diagnosis (byte micro_slot,
byte slave, byte *diaglen);

Function This function (26) checks whether the slave specified has reported a
diagnosis, and where appropriate will return the number of diagnostic
data in "’diaglen".

Parameter slave: Slave address (3..123)

diaglen: Diagnosis length in bytes (max. 250, 0=no diagnosis)

m044_get_slave_diagnosis Read a slave’s diagnostic data

Pascal FUNCTION m044_get_slave_diagnosis (micro_slot: byte;
slave: byte; size: byte; VAR data) : word;

C ushort EXPORT m044_get_slave_diagnosis (byte micro_slot,
byte slave, byte size, void *data);

Function This function (27) reads a diagnostic data block (for Octet-1..Octet-6
see standard; other octets (bytes) are user-specific) from a slave’s
diagnostic channel.

Parameter slave: Slave address (3..123)

size: Number of bytes for reading

data: Address of the destination data buffer

Diagnose 0: Command correctly executed

100: Error: bus differently parameterized

101: Error: consistency conflict



6-44  M-DPM-12 (Type 44) High-Level Language Libraries

m044_get_data_transfer_list Read data transfer list

Pascal FUNCTION m044_get_data_transfer_list (micro_slot: byte;
VAR data: m044_slv_bitmap_type) : word;

C ushort EXPORT m044_get_data_transfer_list (byte micro_slot,
m044_slv_bitmap_type *data);

Function This function (28) reads the data transfer list. Each bit in the data read
represents one slave (example: Slave 17 = Bit-1 of field slave_16_31).
A set bit means that the slave involved is in the DATA (= slave is
activated) status.

Parameter data: Address of a structure variable of the type m044_slv_
bitmap_type (see table below)

The variable type m044_slv_bitmap_type is a data structure consisting of the
following fields:

Field Data type Significance

.slave_0_15 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_16_31 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_32_47 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_48_63 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_64_79 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_80_95 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_96_111 ushort Bit field (Bit-0 .. Bit-15 valid)

.slave_112_123 ushort Bit field (Bit-0 .. Bit-11 valid)



M-DPM-12 (Type 44) High-Level Language Libraries  6-45

m044_check_slave_active Check whether slave is active

Pascal FUNCTION m044_check_slave_active (micro_slot; slave;
VAR active: byte) : word;

C ushort EXPORT m044_check_slave_active (byte micro_slot,
byte slave, byte *active);

Function This function (29) checks whether the slave specified is in the DATA
(=activated) status.

Parameter slave: Slave address (3..123)

active: 0: Slave is not activated
1: Slave is activated

m044_get_master_status_struct Read master’s status structure

Pascal FUNCTION m044_get_master_status_struct (micro_slot: byte;
VAR data: m044_mst_statusstr_type) : word;

C ushort EXPORT m044_get_master_status_struct (byte micro_slot,
m044_mst_statusstr_type *data);

Function This function (30) reads the master status structure.

Parameter data: Address of a master status variable of the type m044_mst_
statusstr_type (see table below)

The variable type m044_mst_statusstr_type is a data structure consisting of the
following fields:

Field Data type Significance

.master_status byte Master status

.id_high byte Hardware Ident Number (High)

.id_low byte Hardware Ident Number (Low)

.master_hw_version byte Hardware version of the master

.master_fw_version byte Firmware version of the master

.user_hw_version byte Hardware version of the user

.user_fw_version byte Firmware version of the user



6-46  M-DPM-12 (Type 44) High-Level Language Libraries

m044_get_system_error_struct Read system error structure

Pascal FUNCTION m044_get_system_error_struct (micro_slot: byte;
VAR data: m044_mst_syserr_type) : word;

C ushort EXPORT m044_get_system_error_struct (byte micro_slot,
m044_mst_syserr_type *data);

Function This function (31) reads the system error structure.

Parameter data: Address of a system error variable of the type m044_mst_
syserr_type (see table below)

The variable type m044_mst_syserr_type is a data structure consisting of the
following fields:

Field Data type Significance

.component ushort Module name of firmware

.subcomponent ushort Module’s subcomponent

.status ushort Status value

.error_number ushort Error number

.detail ushort Detail

m044_poll_system_error  Read system error by polling

Pascal FUNCTION m044_poll_system_error (micro_slot: byte;
VAR syserr: word) : word;

C ushort EXPORT m044_poll_system_error (byte micro_slot,
ushort *syserr);

Function This function (32) is used for polling the master’s system error
(="Component" field of the system error structure). It is required only
if the _M044_ENABLE_IRQ parameter has not been set at re-start.

Parameter syserr: "Component" field of the system error structure



M-DPM-12 (Type 44) High-Level Language Libraries  6-47

Special functions

m044_fw_timer Activate/de-activate firmware timer

Pascal FUNCTION m044_fw_timer(micro_slot: byte; timer: word) : word;

C ushort EXPORT m044_fw_timer(byte micro_slot, ushort timer);

Function This function (33) activates or de-activates the master’s firmware timer.
This (when the interrupt has been activated) cyclically triggers the
interrupt set to the base board.

Parameter timer: Cycle duration as a factor of 25.6 µs (x 0..65535)
timer = 0 deactivates the timer

Diagnosis 0: Command correctly executed

256: Error: command semaphore not set

Accessing the gate array of the M-DPM-12 module

m044_get_fpga_versionRead version of gate array

Pascal FUNCTION m044_get_fpga_version (micro_slot: byte) : byte;

C byte EXPORT m044_get_fpga_version (byte micro_slot);

Function This function reads the version/revision of the gate array:

Bit-0..Bit-3 : Revision Number

Bit-4..Bit-7 : Version Number



6-48  M-DPM-12 (Type 44) High-Level Language Libraries

m044_set_modul_register Set a module register

Pascal PROCEDURE m044_set_modul_register (micro_slot: byte;
reg_type: byte; data: byte);

C void EXPORT m044_set_modul_register (byte micro_slot,
byte reg_type, byte data);

Function This procedure sets a module register (LED or Interrupt Select
Register).

Parameter reg_type: _M044_ISR: set Interrupt Select Register

_M044_LER: set LED register

data: byte to be set (see P. 6-13 for significance)

m044_get_modul_register Read a module register

Pascal FUNCTION m044_get_modul_register (micro_slot: byte;
reg_type: byte) : byte;

C byte EXPORT m044_get_modul_register (byte micro_slot,
byte reg_type);

Function This procedure reads a module register.

Parameter reg_type: _M044_ISR: read Interrupt Select Register

_M044_IST: read Interrupt Status Register

_M044_LER: read LED Register



M-DPM-12 (Type 44) High-Level Language Libraries  6-49

m044_set_timeout_counter Set the timeout counter

Pascal PROCEDURE m044_set_timeout_counter (micro_slot: byte;
data: word);

C void EXPORT m044_set_timeout_counter (byte micro_slot,
ushort data);

Function This procedure sets the module’s timeout counter. This counter is used
for consistency control.

Parameter data: value to be set, as a factor of 10 µs (0..65535)

m044_get_timeout_counter Read timeout counter

Pascal FUNCTION m044_get_timeout_counter (micro_slot: byte) : word;

C ushort EXPORT m044_get_timeout_counter (byte micro_slot;

Function This procedure reads the module's timeout counter. Timeout = return
value (0..65535 x 10 µs)

m044_set_cons Set a consistency request

Pascal PROCEDURE m044_set_cons (micro_slot: byte; mode: byte);

C void EXPORT m044_set_cons (byte micro_slot, byte mode);

Function This procedure sets a consistency request.

Parameter mode: Read consistency: 1
Write consistency: 2



6-50  M-DPM-12 (Type 44) High-Level Language Libraries

Terminate consistency
m044_clear_cons request and read module status

Pascal FUNCTION m044_clear_cons (micro_slot: byte) : byte;

C byte EXPORT m044_clear_cons (byte micro_slot);

Function This procedure terminates the consistency request, and reads the
module status (see m044_get_modul_status).

m044_get_modul_status Read the gate array status

Pascal FUNCTION m044_get_modul_status (micro_slot: byte) : byte;

C byte EXPORT m044_get_modul_status (byte micro_slot);

Function This procedure reads the gate array status (see overview below).

0 0 0 0 0 0 0 Module status

0 Timeout status
0=no error, 1=error

0 Consistency status
0=no error, 1=error

0 Read consistency request
0=active, 1=not active

0 Write consistency request
0=active, 1=not active

0 ASPC 2 consistency request
0=not active, 1=active

0 Host consistency acknowledge
0=active, 1=not active

0 Host access to DPRAM
0=active, 1=not active



M-DPM-12 (Type 44) Commissioning  6-51

Commissioning

For commissioning the PROFIBUS-DP Master M-DPM-12, you have to transfer the
configuration of the system (consisting of master and slaves) in the form of a binary
file onto the M-DPM-12 module. The configuration is stored on the module in flash
memory, i.e. it is also available after a reset (e.g. due to power-down), and should be
transferred only once. If changes are desired in the system configuration, a new
binary file must be created and the old configuration on the module overwritten.

The high-level language library supplied (M044_LIB) provides functions for
transferring a binary file onto the module (download). The current configuration can
also be loaded from the module (upload).

The "COM ET 200" software from Siemens is used to create the configuration file
(binary file).

Tips on installation

The Siemens software COM ET 200 must be installed under Windows 3.x. Insert
Floppy Disk 1, and call the INSTALL.EXE program. Please remember that when
installing under "Options" the memory card drivers have to be de-activated!

The type file for the M-DPM-12 module is supplied on floppy disk together with the
M-DPM-12 module ("TYPDATEI" subdirectory). Please copy all files from the
\MASTERS\ and \BITMAPS\ subdirectories into the identically named
subdirectories of COM ET 200.

Tips on operation (see also COM ET 200 Online Help)

Create a new project (File\New), and the select Master M-DPM-12 as Station
Number 1.

You can then, for example, click Siemens ET200 slave stations, and "append" them
to the PROFIBUS. Assign a station number, and configure the slave. In the
"Configuration" submenu, you need not make an entry in the ’I-Adr.’ and ’O-Adr.’
columns, since this type of addressing is not supported.



6-52  M-DPM-12 (Type 44) Commissioning

When all slaves have been entered, the bus parameters (e.g. the baudrate) must be
set. You can enter the baudrate in the Parameterizing/Bus Parameters menu option.
The maximum settable baudrate is limited by the "slowest" slave.

The project can then be saved. A binary file can be created using File\Export.

Programming with the high-level language library

The binary file must be transferred to the M-DPM-12 module with the library
function m044_download_file. After a download, the module has to be reset. The
M-DPM-12 is then in "STOP" status. The ongoing operating mode can be
determined with the m044_get_master_mode function.

The m044_set_master_mode function sets the master to the "OPERATE" status,
with the slaves specified in the configuration routine being cyclically addressed. One
bit is set in the data transfer list for each active slave. The m044_check_slave_active
function can also be used to check whether a slave is active. When diagnostic data
from a slave are present, a bit is set in the diagnosis list. The m044_check_slave_
diagnosis function can be used to interrogate whether a slave has reported diagnostic
data.

Data are exchanged between master and slave with the library functions
m044_get_slave_xxx  and m044_set_slave_xxx. Note that the user data can be
transferred in bytes, words or blocks.

The m044_poll_system_error function can be used to determine whether an error
has occurred. This function should be called cyclically.



M-DPM-12 (Type 44) Commissioning  6-53

Programming example

Addressing a slave with 4 byte input and 4 byte output user data:

/* Set master to operate status         */

 m044_set_master_mode(microslot, _M044_OPERATE);

 m044_refresh_slave_datastruct(microslot);

/* Check whether slave is active       */

 m044_check_slave_active(microslot, slave, &active);

 if(active)

  {

/* Exchange user data (4 bytes each)  */

   m044_set_slave_data_block(microslot, slave, 4, &dout);

   m044_get_slave_data_block(microslot, slave, 4, &din);

  }

/* Check whether slave has reported diagnosis */

m044_check_slave_diagnosis(microslot, slave, &diaglen);

if(diaglen > 0)

  {

   m044_get_slave_diagnosis(microslot, slave, diaglen, &diag);

  }



6-54  M-DPM-12 (Type 44) Local I/O addresses

Programming with I/O access operations

This chapter is intended for those users who want to write their own application
programs for the MODULAR-4/486 base board.

Local I/O addresses

All addresses are written in hexadecimal form. Bits not used are reserved, and should
be set to 0 when writing. These bits are not valid during reading.

Address Access1 Function

MBA+00h RW16 Set/read DPRAM pointer (0000h-3fffh)

Bit 0 is used to select low or high-byte for byte access
operations to the DPRAM (address line A0).

MBA+03h RW8 LED Register (LER)

During reading, Bits 0 and 1 specify the status of LEDs 1
and 2 (0 = off, 1 = on). During writing, Bits 0 and 1
select LEDs 1 and 2, while Bits 2 and 3 specify the value
to be set.

                                          
1 R16: 16 bit read access, W16: 16 bit write access, RW16: 16 bit read or write access, R8: 8 bit read

access, W8: 8 bit write access, RW8: 8 bit read or write access, W8x = 8 bit write access, any data



M-DPM-12 (Type 44) Local I/O addresses  6-55

Address Access1 Function

MBA+01h RW8 Interrupt Select Register (ISR) / conflict detection

Bit 0 to 2 determine the interrupt line to the base board:

0 0 0  no interrupt line selected
0 0 1  IRQ-A
0 1 0  IRQ-B
0 1 1  IRQ-C
1 0 0  IRQ-D
1 0 1  IRQ-E
1 1 0  IRQ-F
1 1 1  NMI

Bit 4  Interrupt through XINTH (1 = enable)

Bit 5  specifies the response to consistency conflicts:

 0 Timeout counter active (no interrupt)

 1 Interrupt when A-CONS = 1 & XHKAK = 0

Bit 6  Interrupt per firmware timer (1 = enable)

MBA+05h R8 Interrupt Status Register (IST)

A set bit (=1) signals an interrupt:

Bit 0  XINTH interrupt active

Bit 1  KSTATUS interrupt active

Bit 2  Firmware timeout interrupt active

MBA+05h W8 Reset PROFIBUS master

Data = 8fh activated XRESET

Data = 0fh de-activated XRESET

MBA+07h R8 Read gate array version

Bits 0 to 3 = Revision Number,

Bits 4 to 7 = Version Number

e.g.: 0010 0101 = 25h = Version 2, Revision 5

MBA+07h W8x Execute gate array and PROFIBUS master reset

All registers are set to 0. The timeout counter is set to
ffffh.

MBA+08h RW16 Set/read timeout counter TOR (16 bits)



6-56  M-DPM-12 (Type 44) Local I/O addresses

Address Access1 Function

You can set values 0 to 65535 (x 10µs).

MBA+10h

MBA+12h

MBA+14h

MBA+16h

RW16

RW16

RW16

RW16

Read/write DPRAM-word

Read/write DPRAM-byte1

Read/write DPRAM-word, after which the address
pointer will be incremented by 2

DPRAM-Byte read/write, after which the address pointer
will be incremented by 1

MBA+18h W8 Set/erase consistency request

Data = 00h: Erase consistency request and module status

Data = 01h: Read consistency (XRHCONS = 0)

Data = 02h: Write consistency (XWHCONS = 0)

MBA+18h R8 Terminate consistency request and read module status

Bit 0 = TIMEOUT STATUS (0=OK, 1=ERROR)

Bit 1 = CONSISTENCY STATUS (0=OK, 1=ERROR)

Bit 2 = R-CONS (read consistency request, low-active)

Bit 3 = W-CONS (write consistency request, low-active)

Bit 4 = A-CONS (ASPC2 consistency request)

Bit 5 = XHKAK (host consistency acknowledge,
            (low-active)

Bit 6 = XCSDPR2 (host access to DPRAM,
(low-active)

MBA+19h R8 Read module status

see MBA+0x18h

                                          
1 R16: 16 bit read access, W16: 16 bit write access, RW16: 16 bit read or write access, R8: 8 bit read

access, W8: 8 bit write access, RW8: 8 bit read or write access, W8x = 8 bit write access, any data

1 In the case of byte accessing to the DPRAM, Bit 0 of the address pointer selects whether the low or the
high byte is used (Bit 0 = 0: Lowbyte, Bit 0 = 1: Highbyte). The base board must, however, execute word
access operations.



M-DPM-12 (Typ 44) Index  41

Index for M-DPM-12

ASPC........................................................................................................................6-22
ASPC 2......................................................................6-18, 6-19, 6-21, 6-22, 6-23, 6-24
Baudrate .................................................................................................. 6-4, 6-12, 6-24
Binary data record

download ..............................................................................................................6-30
Binary data record ....................................................................................................6-30
Block diagram ............................................................................................................6-5
Cable for M-DPM-12...............................................................................................6-15
C-link........................................................................................................................6-28
C-Link ........................................................................................................................6-4
C-Link adapter

configuration ..........................................................................................................6-7
COM ET 200................................................................................6-17, 6-30, 6-33, 6-54
Commissioning ................................................................................................ 6-4, 6-54
Configuration plan .....................................................................................................6-7
Conflict control by interrupt ....................................................................................6-25
Conflict control with timeout counter .....................................................................6-24
Consistent access

conflict control .....................................................................................................6-22
consistency request ........................................................................... 6-25, 6-52, 6-59

Consistent access operations....................................................................................6-21
Data channel

definition ..............................................................................................................6-38
sub-channels.........................................................................................................6-38

Data transfer list .......................................................................................................6-47
Delivery......................................................................................................................6-6
Diagnose...................................................................................................................6-46
Diagnosis............................................................................................... 6-28, 6-45, 6-46
DPRAM pointer ............................................................................................. 6-20, 6-57
Driver task M044TASK...........................................................................................6-27
Dual-port RAM (DPRAM) ......................................................................................6-20
Dual-Port RAM (DPRAM).............................................................................. 6-4, 6-16
EEPROM....................................................................................................................6-8
Error handling ..........................................................................................................6-28
Firmware timer ...................................................................................... 6-18, 6-19, 6-50
FPGA Version ..........................................................................................................6-50
Functional Description...............................................................................................6-4



Initialization ..................................................................................................... 6-9, 6-16
Interrupt Select Register ..........................................................................................6-58
Interrupt selection ....................................................................................................6-10
Interrupt-Select-Register..........................................................................................6-18
LEDs 1 and 2...................................................................... 6-14, 6-16, 6-17, 6-51, 6-57
Master control ..........................................................................................................6-35
Parameterization of the PROFIBUS ........................................................................6-17
Parameterizing the PROFIBUS ...............................................................................6-30
Plug connector assignments.....................................................................................6-14
Programming.................................................................................................... 6-8, 6-16

example ................................................................................................................6-56
local I/O addresses ...............................................................................................6-57

Reset ...................................................................................................... 6-16, 6-37, 6-58
master software (firmware) ..................................................................................6-34

Slave accessing ........................................................................................................6-38
Special functions ......................................................................................................6-50
System error .............................................................................................................6-49
Technical data ............................................................................................................6-5
Timeout counter ...........................................................................6-12, 6-16, 6-52, 6-59
Watchdog .................................................................................................................6-36


	M-DPM-12
	Functional Description
	Configuration and installation
	Plug connector assignments

